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Abstract

Federated learning (FL), as a privacy-preserving collabora-
tive machine learning paradigm, has attracted significant in-
terest from industry and academia. To allow each data owner
(FL client) to train a heterogeneous and personalized lo-
cal model based on its local data distribution, system re-
sources and requirements on model structure, the field of
model-heterogeneous personalized federated learning (MH-
PFL) has emerged. Existing MHPFL approaches either rely
on the availability of a public dataset with special charac-
teristics to facilitate knowledge transfer, incur high compu-
tational and communication costs, or face potential model
leakage risks. To address these limitations, we propose a
model-heterogeneous personalized Federated learning ap-
proach based on generalized proxy feature Extractor Sharing
(pFedES) for supervised image classification tasks. (1) We
devise a shared small proxy homogeneous feature extractor
before each client’s heterogeneous local model. (2) Clients
train them via the proposed iterative learning to enable the
exchange of global generalized knowledge and local per-
sonalized knowledge. (3) The small proxy local homoge-
neous extractors produced after local training are uploaded
to the server for aggregation to facilitate knowledge fusion
across clients. We theoretically prove pFedES converges
with a non-convex convergence rate O(1/T ). Experiments
on 3 benchmark datasets against 9 baselines demonstrate
that pFedES performs state-of-the-art model accuracy while
maintaining efficient communication and computation.

Introduction
Federated learning (FL) (Goebel et al. 2023) is an emerging
collaborative machine learning paradigm. It often relies on
a central FL server to coordinate decentralized data owners
(FL clients) to train a shared global FL model in a privacy-
preserving manner (Kairouz et al. 2021).
In a traditional FL system, the server first broadcasts the

global model to clients. Clients then train the received global
model on their respective local data and upload the trained
local models to the server. The server aggregates the re-
ceived local models to update the global model. These steps
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are repeated until the global model converges. During the
entire training process, only models are transmitted between
the server and clients, while the data never leaves clients,
thereby protecting data privacy.
The above prevailing mode of FL follows the model ho-

mogeneity assumption. It requires that all clients train local
models with the same structures as the global model. Thus,
it is still not equipped to address the following challenges
often encountered in practice:

• Data Heterogeneity. Clients have non-independently
and identically distributed (non-IID) data (Tan et al.
2022a; Yi et al. 2023c). Aggregating biased local models
trained on such data might lead to a sub-optimal global
model (Zhu et al. 2021a), which may perform worse than
the local models trained solely on clients.

• System Resource Heterogeneity. FL clients are often
devices (e.g., mobile phones, autonomous vehicles) with
divergent system resources (computational power, com-
munication bandwidth, etc (Jiang et al. 2022; Yi et al.
2022)). The traditional FL approach limits all clients to
train the smallest model supported by the lowest-end
client, leading to model performance bottlenecks and
wasted system resources of high-end devices.

• Model Ownership Heterogeneity. When FL clients are
companies, they are often willing to fine-tune heteroge-
neous models from their internal repositories via FL. Due
to intellectual property considerations (Ye et al. 2023),
they are reluctant to expose model structures to others.

The field of model-heterogeneous personalized federated
learning (MHPFL) has emerged to address these challenges.
It enables each client to train a personalized and heteroge-
neous model based on its local data distribution, system re-
sources, and model structure requirements (Yi et al. 2023a,b,
2024a,b).
Prior efforts for MHPFL can be divided into three main

branches: Knowledge distillation-based MHPFL methods
either depend on a public dataset which is not always avail-
able (Lin et al. 2020), or introduce heavy communication
costs (Cheng et al. 2021), computational overheads (Huang
et al. 2022b), and risks of privacy leakage (Takahashi et al.
2023; Tan et al. 2022b). Mutual learning-based MHPFL
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methods (Shen et al. 2020; Wu et al. 2022) train a local het-
erogeneous large model and a homogeneous small model on
clients with a mutual learning approach and share the homo-
geneous ones across clients. Lacking discussions about the
relationship between the two models in model capacity or
structure leads to limited model performance. Model split-
based MHPFL methods (Liang et al. 2020; Collins et al.
2021) split each client’s local heterogeneous model into a
homogeneous part and a heterogeneous part, and share the
homogeneous parts across clients, leading to model perfor-
mance bottleneck and leakage of the shared model structure.
To tackle the above limitations, we propose an effi-

cient model-heterogeneous personalized Federated learning
framework based on generalized proxy small homogeneous
feature Extractor Sharing (pFedES) for supervised image
classification tasks. (1) We design a proxy small homoge-
neous feature extractor before each client’s local heteroge-
neous model. (2) Clients train them with the proposed itera-
tive learning method to facilitate the bidirectional exchange
of the globally generalized knowledge carried by the shared
proxy homogeneous feature extractor and the locally per-
sonalized knowledge absorbed by the local heterogeneous
model. (3) The updated local proxy homogeneous feature
extractors are uploaded to the FL server for aggregation to
facilitate knowledge sharing across heterogeneous clients.
Only the proxy small homogeneous feature extractors are
transmitted between the server and clients, pFedES incurs
low communication costs and protects the privacy of local
data and model structures. Only one small homogeneous
feature extractor is being trained additionally by each client,
introducing low extra computational overheads.
Our main contributions are summarized as follows:

• We design a proxy homogeneous feature extractor shared
for information fusion. It generates enhanced data with
generalized global knowledge for clients. The devised it-
erative training alternatively trains it with the heteroge-
neous client model for bidirectional knowledge transfer.

• Through theoretical analysis, we prove the non-convex
convergence rate O(1/T ) of pFedES and verify that it
converges over wall-to-wall time.

• Extensive experiments on 3 benchmark datasets against
9 state-of-the-art MHPFL methods demonstrate the su-
perior performance of pFedES, it achieves up to 1.29%
higher accuracy, while reducing communication and
computation costs by 99.6% and 82.9%.

Related Work
Existing MHPFL methods have two families: a) clients
hold different subnets of the global model, and heteroge-
neous subnets can be aggregated on the server, such as
FedRolex (Alam et al. 2022), FLASH (Babakniya et al.
2023), InCO (Chan et al. 2024), HeteroFL (Diao 2021),
FjORD (Horváth 2021), HFL (Lu et al. 2022), Fed2 (Yu
et al. 2021), FedResCuE (Zhu et al. 2022); b) clients hold
models with completely different structures, which cannot
be aggregated directly on the server, which includes:
Knowledge Distillation-based MHPFL. Some methods

(Cronus (Chang et al. 2021), FedGEMS (Cheng et al.

2021), Fed-ET (Cho et al. 2022), FSFL (Huang et al.
2022a), FCCL (Huang et al. 2022b), DS-FL (Itahara et al.
2023), FedMD (Li and Wang 2019), FedKT (Li et al.
2021), FedDF (Lin et al. 2020), FedHeNN (Makhija et al.
2022), FedKEM (Nguyen et al. 2023), KRR-KD (Park et al.
2023), FedAUX (Sattler et al. 2021), CFD (Sattler et al.
2022), FedKEMF (Yu et al. 2022) and KT-pFL (Zhang
et al. 2021)) allow the server to aggregate the output log-
its of local heterogeneous models on a public dataset to
construct the global logits. However, the public dataset is
not always accessible and should have the same distribu-
tion as private data. Data privacy may also be compromised
by paired-logits inversion attacks (Takahashi et al. 2023).
pFedHR (Wang et al. 2023) allows the server to split het-
erogeneous client models by layers and re-splice candidate
models which are chosen for different clients by model sim-
ilarity on a public dataset, also facing the above issues.
Some methods (FedIOD (Gong et al. 2024), DFRD (Luo

et al. 2023), FedGD (Zhang et al. 2023), FedZKT (Zhang
et al. 2022), FedGen (Zhu et al. 2021b)) introduce zero-
shot knowledge distillation to FL for generating a shared
dataset by training a generator, which is time-consuming.
Other methods (HFD (Ahn et al. 2019, 2020), FedGKT (He
et al. 2020), FD (Jeong et al. 2018), FedProto (Tan et al.
2022b), FedTGP (Zhang et al. 2024)) allow each client to
upload the average logits or representations of local seen-
class samples to the server for aggregation to produce the
global class-logits or representations, which are sent back to
clients and used to calculate the distillation loss with local
logits for each local data sample, incurring high computa-
tional costs. The uploaded classes might leak privacy.
Mutual Learning-based MHPFL. In FML (Shen et al.

2020), FedKD (Wu et al. 2022), ProxyFL (Kalra et al.
2023) and FedAPEN (Qin et al. 2023), each client owns a
small homogeneous model and a large heterogeneous model
trained via mutual learning. The trained homogeneous mod-
els are aggregated by the server for knowledge fusion. How-
ever, they do not explore the relationship between the two
models in model structure and parameter capacity, leading
to limited model performance.
Model Split-based MHPFL. They split each client’s

local model into a feature extractor and a classifier, and
only one part is shared. FedMatch (Chen et al. 2021),
FedRep (Collins et al. 2021), FedBABU (Oh et al. 2022),
FedAlt/FedSim (Pillutla et al. 2022) share the homo-
geneous feature extractor to enhance model generaliza-
tion while preserving the personalized local classifier. In
contrast, FedClassAvg (Jang et al. 2022), LG-FedAvg
(Liang et al. 2020), FedGH (Yi et al. 2023a), and CHFL
(Liu et al. 2022) share the homogeneous classifier to im-
prove model classification while preserving the personalized
local feature extractor. Since only part of the entire model
is shared, the performance of local heterogeneous models
faces bottlenecks. They are also prone to leaking the struc-
ture of the shared model part.
Our Insight. pFedES always keeps each client’s local

data and local heterogeneous model on clients. It adds a
proxy shared global homogeneous feature extractor before
the local heterogeneous model. Aggregating homogeneous
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extractors implements knowledge fusion across heteroge-
neous clients. The shared global homogeneous extractor
carries generalized global knowledge and the local hetero-
geneous model has personalized local knowledge, training
them by the devised iterative training enhances the general-
ization and personalization of local models.

Preliminaries
FedAvg (McMahan et al. 2017) is a typical FL algorithm.
It assumes that a FL system consists of one central FL server
and N FL clients. In each communication round, the server
randomly selects a fraction C of N clients (the selected
client set is S, |S| = bC · Nc = K), and broadcasts the
global model F(!) (F(·) is model structure, ! are model pa-
rameters) to them. Client k trains the received global model
F(!) on its local dataset Dk (Dk ⇠ Pk, Dk obeys distribu-
tion Pk, i.e., local data from different clients are non-IID) to
obtain an updated local model F(!k) via gradient descent,
i.e., !k  !�⌘r`(F(xi;!), yi). `(F(xi;!), yi) is the loss
of the global model F(!) on the sample (xi, yi) 2 Dk.
The updated local model F(!k) is uploaded to the server.
The server aggregates the received local models from K
clients via weighted averaging to update the global model,
i.e., ! =

P
k2S

nk
n !k (nk = |Dk| is the data volume of

client k, n =
PN�1

k=0 nk is total data volume of all clients).
This typical FL algorithm requires all clients to train ho-

mogeneous models. Its training objective is to minimize the
average loss of the global model F(!) on all client data,

min
!2Rd

N�1X

k=0

nk

n
Lk(F(!);Dk), (1)

where the parameters of the global model ! are d-
dimensional real numbers.Lk(F(!);Dk) is the average loss
of the global model F(!) on client k’s local data Dk.

Our objective in this work is to study MHPFL in the
context of supervised image classification tasks. We as-
sume that all clients execute the same image classification
tasks, and different clients hold heterogeneous local mod-
els with different structures, Fk(!k) (Fk(·) is the heteroge-
neous model structure, !k denotes personalized model pa-
rameters). pFedES aims to minimize the loss sum of all
local heterogeneous personalized models on their local data,

min
!0,...,!N�12Rd0,...,dN�1

N�1X

k=0

Lk(Fk(!k);Dk), (2)

where the parameters !0, . . . ,!N�1 of local heterogeneous
models are d0, . . . , dN�1-dimensional real numbers.

The Proposed pFedES Approach
To achieve the above objective, we devise a proxy sharing
small homogeneous feature extractor G(✓) (G(·) is the ex-
tractor structure, ✓ denotes model parameters) before each
FL client k’s local heterogeneous model Fk(!k) in Fig-
ure 1(a).

Proxy Homogeneous Feature Extractor Structure
It’s practical to introduce low computational overhead con-
sumed by training the extra proxy homogeneous feature ex-
tractors on clients while ensuring well-performed models.
Therefore, we design a small CNN model consisting of two
convolutional layers with ‘padding=same’ as the proxy ho-
mogeneous feature extractor in Figure 1(b), which guaran-
tees the dimensions of the input original data and the output
enhanced data are the same. Other feature extractor struc-
tures that satisfy this dimension condition can also be ap-
plied into pFedES, and the user can tailor the homoge-
neous feature extractor structure according to practical re-
quirements.

Overview
In communication round t, as depicted in Figure 1(a),
pFedES performs the following steps:
1. The server randomly selects K clients among N clients

and broadcasts the global proxy homogeneous feature
extractor G(✓t�1) to the selected clients St.

2. Client k 2 St trains the received global proxy homo-
geneous feature extractor G(✓t�1) and local heteroge-
neous model Fk(!

t�1
k ) on local data Dk following the

proposed iterative training method. Afterwards, the local
proxy homogeneous feature extractor G(✓tk) is uploaded
to the FL server, while the heterogeneous local model
Fk(!

t
k) remains in client k.

3. The server aggregates received homogeneous feature ex-
tractors G(✓tk) to update the global proxy homogeneous
feature extractor G(✓t).

The above steps are repeated until all clients’ heterogeneous
local models Fk(!k) converge. Finally, only each client’s
personalized heterogeneous local model Fk(!k) is used for
inference. The details of pFedES are described in Algo-
rithm 1 (Appendix A). 1
Based on the above workflow, the training objective of

pFedES in Eq. (2) can be re-expressed as:

min
✓,!0,...,!N�12Rd0,...,dN�1

N�1X

k=0

Lk({G(✓),Fk(!k)};Dk).

(3)

Iterative Training and Model Aggregation
Motivation. It’s intuitive to train the proxy homogeneous
feature extractor and the local heterogeneous model by gra-
dient descent simultaneously. However, this training man-
ner faces two issues: 1) The complete global knowledge
from the global proxy homogeneous feature extractor is only
transferred to clients in the first training batch, and it fades
in the remaining training batches. This incomplete global
knowledge transfer might degrade model performance. 2)
Training a larger model combined with the two models in-
creases the memory burden, and it may be trained insuffi-
ciently on limited local data, which also may lead to de-
graded model performance.

1Appendices: https://github.com/LipingYi/pFedES
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Figure 1: (a): Workflow of pFedES. (b): Proxy Homogeneous feature extractor structure.

To facilitate effective global and local complete knowl-
edge transfer, we design a novel iterative training method
to train each client’s proxy homogeneous feature extractor
and heterogeneous local model.

Freeze Proxy Extractor, Train Heterogeneous Model
We first freeze the global proxy homogeneous feature ex-
tractor from the server and train the local heterogeneous
model on local data, which transfers global generalized
knowledge from the global proxy homogeneous feature ex-
tractor to clients.

As Step ¿ in Figure 1(a), in communication round t,
client k freezes the global proxy homogeneous feature ex-
tractor G(✓t�1) received from the server and trains the het-
erogeneous local model Fk(!

t�1
k ) with two inputs: 1) client

k’s original local data (x, y) 2 Dk as prompt information
being inputted into G(✓t�1) to obtain the enhanced data x̂ =
G(✓t�1;x) (x̂ and x are of the same dimension), which con-
tains both global generalized knowledge and local person-
alized knowledge; 2) client k’s original data (x, y) 2 Dk.
They are input into Fk(!

t�1
k ) to output predictions:

ŷ1 = Fk(!
t�1
k ; x̂); ŷ2 = Fk(!

t�1
k ;x). (4)

Then, client k calculates the hard loss `1, `2 (e.g., cross-
entropy loss (Zhang and Sabuncu 2018)) between the pre-
dictions ŷ1, ŷ2 and the label y, respectively,

`1 = `(ŷ1, y), `2 = `(ŷ2, y). (5)

In earlier communication rounds, the global proxy homo-
geneous feature extractor might be unstable. The enhanced
data produced by a poor global proxy homogeneous feature
extractor might be of low quality, thereby negatively impact-
ing the performance of the heterogeneous local model. To
balance the global generalized knowledge and the local per-
sonalized knowledge carried by the two types of input data,

we compute a weighted sum of the hard loss `1, `2 of the two
data inputs as the integrated loss `! of the heterogeneous lo-
cal model:

`! = µ · `1 + (1� µ) · `2, µ 2 (0, 0.5]. (6)

With the integrated loss `! , the parameters of the hetero-
geneous local model are updated via gradient descent (e.g.,
SGD (Ruder 2016)):

!t
k  !t�1

k � ⌘!r`!. (7)

⌘! is the learning rate of the heterogeneous local model.
During this training step, the complete global knowledge
from the frozen global proxy homogeneous feature extrac-
tor is transferred to the heterogeneous local model by en-
hanced data across all training batches, thereby improving
local model generalization. The local personalized knowl-
edge from the original local data is further incorporated
into the heterogeneous local model, thereby enhancing lo-
cal model personalization.

Freeze Heterogeneous Model, Train Proxy Extractor
We freeze the local heterogeneous model updated in the first
training step and train the proxy homogeneous feature ex-
tractor on local data to transfer local knowledge to global.

Following Step ¡ shown in Figure 1(a), the heteroge-
neous local model Fk(!

t
k) updated in Step ¿ is frozen and

the global proxy homogeneous feature extractor G(✓t�1) is
trained. Client k inputs its local data (x, y) 2 Dk into
G(✓t�1) to generate the enhanced data x̂ = G(✓t�1;x).
Then, it inputs x̂ into the frozen Fk(!

t
k) to obtain:

ŷ = Fk(!
t
k; x̂). (8)

Client k computes the loss `✓ of prediction ŷ and label y:

`✓ = `(ŷ, y). (9)
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Client k updates the proxy extractor via gradient descent:
✓tk  ✓t�1 � ⌘✓r`✓. (10)

⌘✓ is the learning rate of the proxy homogeneous feature
extractor. During this step, personalized local knowledge is
transferred into the updated proxy homogeneous local ex-
tractor, which is uploaded to the FL server for aggregation.

Proxy Homogeneous Feature Extractor Aggregation
After receiving local proxy homogeneous feature extractors
G(✓tk) from clients, the server aggregates them to facilitate
knowledge fusion across heterogeneous clients:

✓t =
X

k2St

nk

n
✓tk. (11)

Discussion
In this section, we discuss pFedES’s following aspects:
Computational Cost. Besides training heterogeneous lo-

cal models Fk(!k), clients train small proxy homogeneous
feature extractors G(✓). Since we design a small CNN with
two convolutional layers as the proxy feature extractor G(✓),
training it incurs low extra computational costs per round.
Communication Cost. Since only the small proxy ho-

mogeneous feature extractors G(✓) are transmitted between
the server and clients, pFedES incurs lower communication
costs than transmitting complete models as in FedAvg.
Privacy Preservation. For data privacy, the client and

the server only exchange the proxy homogeneous feature
extractor G(✓) while local data x 2 Dk are always stored
within clients, hindering data exploration outside the client.
Only using proxy extractors G(✓) while lacking enhanced
data x̂ can not inversely infer original data x. For model pri-
vacy, since only the proxy homogeneous feature extractor
G(✓) is transmitted, the client’s heterogeneous local model
Fk(!k) never leaves the client, the server and the commu-
nication channel eavesdropper cannot steal client models
Fk(!k), protecting users’ model intellectual property.

Convergence Analysis
We declare some notations. We use t to denote a commu-
nication round and e 2 {0, 1, . . . , E} to denote the itera-
tions of local training. tE + e is the e-th iteration in the
(t + 1)-th round. tE + 0 indicates that in the (t + 1)-th
round, before local model training, clients receive the global
extractor G(✓t) aggregated in the t-th round. tE + E is the
last iteration of local training, indicating the end of local
training in the (t + 1)-th round. We denote the combina-
tion of the frozen homogeneous feature extractor with G(✓),
and the training of the heterogeneous local model Fk(!k)
at the first branch of Step 1 during the iterative training
process as Hk('k) = G(✓) � Fk(!k). We assume Fk(!k)
and the combined modelHk('k) use the same learning rate
⌘ = ⌘! = ⌘'.
Assumption 1. Lipschitz Smoothness. The gradients of
Client k’s heterogeneous local model are L1–Lipschitz
smooth, i.e.,

krLt1
k (!t1

k ;x, y)�rLt2
k (!t2

k ;x, y)k 6 L1k!t1
k � !t2

k k,
8t1, t2 > 0, k 2 {0, 1, . . . , N � 1}, (x, y) 2 Dk.

(12)

The above formulation can be expressed as:

Lt1
k � Lt2

k 6 hrLt2
k , (!t1

k � !t2
k )i+ L1

2
k!t1

k � !t2
k k22. (13)

Assumption 2. Unbiased Gradient and Bounded Vari-
ance. Random gradient gt!,k = rLt

k(!
t
k;B

t
k) (B is a

batch of local data) of each client’s heterogeneous local
model Fk(!k) is unbiased, and random gradient gt',k =
rLt

k('
t
k;B

t
k) of each client’s combined model Hk('k) is

also unbiased, i.e.,

EBt
k✓Dk

[gt!,k] = rLt
k(!

t
k),

EBt
k✓Dk

[gt',k] = rLt
k('

t
k),

(14)

and the variance of random gradient gt!,k and gt',k is
bounded by:

EBt
k✓Dk

[krLt
k(!

t
k;B

t
k)�rLt

k(!
t
k)k22] 6 �2,

EBt
k✓Dk

[krLt
k('

t
k;B

t
k)�rLt

k('
t
k)k22] 6 �2.

(15)

With these assumptions, we derive the following lemma
and theorem (proofs can be found in Appendices C and D).

Lemma 1. Based on Assumptions 1 and 2, during local it-
erations {0, 1, ..., E} in the (t + 1)-th FL training round,
the loss of an arbitrary client’s heterogeneous local model
is bounded by:

E[L(t+1)E ]  LtE+0 + (
L1⌘

2µ̃2

2
� ⌘µ̃)

E�1X

e=0

krLtE+ek22

+
L1⌘

2(�2 + �2)
2

.

(16)

where µ̃ = 1� µ, µ 2 (0, 0.5], µ̃ 2 [0.5, 1).

Theorem 1. Non-convex convergence rate of pFedES.
Based on the above assumptions and lemma, for an arbi-
trary client and any ✏ > 0, the following inequality holds:

1
T

T�1X

t=0

E�1X

e=0

krLtE+ek22 
1
T

PT�1
t=0 (LtE+0 � E[L(t+1)E ])

⌘µ̃� L1⌘2µ̃2

2

+
L1⌘

2(�2+�2)
2

⌘µ̃� L1⌘2µ̃2

2

< ✏,

s.t.⌘ <
2✏µ̃

L1(�2 + �2 + µ̃2✏)
.

(17)

Hence, under pFedES, a client’s heterogeneous local
model converges at a non-convex rate of ✏ ⇠ O( 1

T ).

Experimental Evaluation
To evaluate pFedES, we compare it against 9 state-of-the-
art MHPFL approaches on 3 benchmark datasets. The exper-
iments are conducted with Pytorch on 4 NVIDIA GeForce
RTX 3090 GPUs with 24G memory.2

2Codes: https://github.com/LipingYi/pFedES
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N=10, C=100% N=50, C=20% N=100, C=10%
Method MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100
Standalone 99.93±0.74 96.35±0.56 74.32±0.89 99.95±0.23 95.25±0.67 62.38±0.41 99.81±0.92 92.58±0.35 54.93±0.78
LG-FedAvg 99.90±0.50 96.47±0.87 73.43±0.42 99.90±0.95 94.20±0.28 61.77±0.63 99.29±0.54 90.25±0.79 46.64±0.36
FedGH 99.93±0.27 96.51±0.23 74.39±0.05 99.96±0.37 95.28±0.20 62.61±0.95 99.82±0.56 92.59±0.67 54.95±0.72
FML 99.93±0.91 94.83±0.48 70.02±0.22 99.91±0.67 93.18±0.80 57.56±0.53 99.42±0.45 87.93±0.29 46.20±0.77
FedKD 99.71±0.34 94.77±0.61 70.04±0.88 99.75±0.52 92.93±0.43 57.56±0.98 99.31±0.30 90.23±0.71 50.99±0.55
FedAPEN 99.94±0.84 95.38±0.26 71.48±0.69 99.95±0.73 93.31±0.67 57.62±0.85 99.40±0.32 87.97±0.91 46.85±0.47
FD 99.87±0.56 96.30±0.74 - - - - - - -
FedProto 99.91±0.29 95.83±0.88 72.79±0.64 99.95±0.43 95.10±0.73 62.55±0.51 99.51±0.39 91.19±0.82 54.01±0.28
FedTGP 99.93±0.63 96.14±0.85 72.79±0.28 99.95±0.46 94.93±0.32 62.60±0.75 99.50±0.10 92.22±0.77 54.24±0.57
pFedES 99.95±0.10 96.68±0.31 74.42±0.23 100.00±0.16 95.74±0.24 63.55±0.39 99.93±0.34 92.89±0.12 55.15±0.04

Note: N : number of clients. C: fraction of participating clients. ‘-’ denotes failure to converge. “ ”: best method. “ ”: best baseline.

Table 1: Average test accuracy (%) for model-homogeneous FL.

N=10, C=100% N=50, C=20% N=100, C=10%
Method MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100
Standalone 99.94±0.45 96.53±0.68 72.53±0.29 99.95±0.83 95.14±0.76 62.71±0.52 99.60±0.91 91.97±0.37 53.04±0.24
LG-FedAvg 99.88±0.64 96.30±0.58 72.20±0.19 99.86±0.80 94.83±0.93 60.95±0.47 99.07±0.72 91.27±0.25 45.83±0.67
FedGH 99.95±0.26 96.55±0.62 72.60±0.94 99.96±0.28 95.59±0.51 63.29±0.15 99.60±0.05 92.51±0.18 53.69±0.30
FML 53.20±0.84 - - 53.21±0.50 - - - - -
FedKD 55.36±0.95 80.20±0.30 53.23±0.77 54.94±0.42 77.37±0.61 44.27±0.85 55.69±0.22 73.21±0.56 37.21±0.98
FedAPEN 53.54±0.34 - - 53.92±0.70 - - 46.97±0.53 - -
FD 99.93±0.89 96.21±0.46 - 59.08±0.12 - - - - -
FedProto 99.95±0.81 96.51±0.73 72.59±0.60 99.95±0.28 95.48±0.63 62.69±0.94 99.49±0.55 92.49±0.26 53.67±0.79
FedTGP 99.91±0.50 96.43±0.62 72.36±0.81 99.91±0.38 95.53±0.45 63.28±0.07 99.49±0.64 92.50±0.31 53.20±0.78
pFedES 99.96±0.14 96.70±0.09 73.89±0.26 99.98±0.19 95.79±0.02 64.32±0.11 99.62±0.23 92.72±0.07 54.40±0.15

Note: N : number of clients. C: fraction of participating clients. ‘-’ denotes failure to converge. “ ”: best method. “ ”: best baseline.

Table 2: Average test accuracy (%) for model-heterogeneous FL.

Experiment Setup
Datasets. We evaluate pFedES and baselines on 3 im-
age classification datasets: MNIST 3 (LeCun et al. 1998),
CIFAR-10 and CIFAR-100 4 (Krizhevsky et al. 2009). They
are divided into non-IID datasets following the method spec-
ified in (Shamsian et al. 2021). For MNIST and CIFAR-
10, we assign only data from 2 out of the 10 classes to
each client (non-IID: 2/10). For CIFAR-100, we assign only
data from 10 out of the 100 classes to each client (non-IID:
10/100). Then, each client’s local data are further divided
into the training set and the testing set following the ratio of
8:2. The testing set is stored by each client and follows the
same distribution as the training set.
Models. As shown in Tables 3 and 4 (Appendix B), each

client trains a CNN model. In model-homogeneous set-
tings, each client has the same CNN-1 model. In model-
heterogeneous settings, clients are assigned with {CNN-
1,. . ., CNN-5} with uniform probability. For both model-
homogeneous and model-heterogeneous settings on CIFAR,
the structure of the proxy homogeneous feature extractor in
pFedES is as shown in Figure 1(b). For MNIST, the num-
ber of filters is 1 in the second convolutional layer of the
proxy homogeneous feature extractor in Figure 1(b). For
FML, FedKD and FedAPEN in model-heterogeneous set-
tings, the smallest ‘CNN-5’ model is used as the homoge-
neous model.
Baselines. We compare pFedESwith 9 best baselines be-

3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/\%7Ekriz/cifar.html

longing to the three categories of fully model-heterogeneous
FL in the Related Work Section. Standalone, clients
train local models independently. Model split: LG-FedAvg
(Liang et al. 2020) and FedGH (Yi et al. 2023a). Mutual
learning: FML (Shen et al. 2020), FedKD (Wu et al. 2022),
and FedAPEN (Qin et al. 2023). Public-data independent
knowledge distillation: FD (Jeong et al. 2018), FedProto
(Tan et al. 2022b) and FedTGP (Zhang et al. 2024).
Evaluation Metrics. We measure pFedES and baselines

with: (1) Accuracy: we measure the individual test accuracy
of each client’s local model and calculate the average test
accuracy. (2) Communication Cost: We trace the number
of transmitted parameters when the average model accuracy
reaches the given target accuracy. (3) Computation Cost:
We track the computational FLOPs consumed when the av-
erage model accuracy reaches the given target accuracy.
Training Strategy. We tune the optimal FL settings for

all methods via grid search. The epochs of local model train-
ingE 2 {1, 10} and the batch sizeB 2 {64, 128, 256, 512}.
The optimizer is SGD with learning rate ⌘ = ⌘! = ⌘✓ =
0.01. We also tune special hyperparameters for baselines and
report optimal results. We adjust two hyperparameters (the
loss weight µ and training epoch Efe of the proxy homo-
geneous feature extractor) for pFedES 5. To compare with

5More details are given in Appendix B which also describes
more experiment results of average test accuracy curves, visualized
personalization, visualized enhanced data, robustness to client par-
ticipant rates, sensitivity to homogeneous feature extractor struc-
tures, and ablation study.
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Figure 2: Client individual accuracy distribution.

the baselines fairly, we set the total number of communi-
cation rounds T 2 {100, 500} to ensure that all MHPFL
algorithms converge. Each experiment is tested with 3 trails
and recorded the average result.

Comparisons Results
We compare pFedES with baselines under model-
homogeneous and -heterogeneous FL with different N,C.

Average Accuracy. Tables 1 and 2 show that the average
accuracy of pFedES surpasses other baselines under both
model-homogeneous and model-heterogeneous settings, by
up to 1.29%. Since pFedES performs slight accuracy vari-
ances with best baselines on MNIST, we only depict the av-
erage accuracy of pFedES and the best baseline - FedGH
varies as communication rounds on CIFAR-10 and CIFAR-
100 in model-heterogeneous FL. Figure 4 (Appendix B)
shows that pFedES converges to a higher average accuracy
with faster or similar convergence speeds to FedGH. The
subsequent experiments are conducted on more complicated
CIFAR datasets in model-heterogeneous FL scenarios.
Individual Accuracy. Figure 2 presents client individ-

ual accuracy distribution of pFedES and the best baseline -
FedGH. ‘+’ denotes the average accuracy of all clients, and
a shorter box bounded by the upper and lower quartile indi-
cates smaller accuracy variances across clients. pFedES has
higher average accuracy and a smaller variance than FedGH
in most settings, further validating its effectiveness.
Trade-off among Accuracy, Computational & Com-

munication Costs. We compare pFedES and the state-of-
the-art baseline FedGH in terms of model accuracy, compu-
tational costs and communication costs. The target accuracy
set for N = {10, 50, 100} on CIFAR-10 dataset is 90% and
that set for N = {10, 50, 100} on CIFAR-100 dataset are
{70%, 60%, 50%}. As shown in Figure 3, pFedES consis-
tently achieves the highest model accuracy with far lower
communication costs than FedGH, while incurring simi-
lar computational costs. This indicates that pFedES strikes

Figure 3: Trade-off among test accuracy, computational and
communication costs. The sizes of markers (dots of varying
sizes) reflect the computational FLOPs (1e9).

the best trade-off among the three metrics. Compared with
FedGH, pFedES incurs 1/224 communication and 1/5.85
computational costs (i.e., 99.6% communication and 82.9%
computational cost savings), due to its faster convergence.

Conclusion
This paper proposed a novel model-heterogeneous personal-
ized federated learning approach, pFedES, based on shar-
ing proxy homogeneous feature extractors with efficient
privacy preservation, and communication and computation
cost savings. It enables each client to alternatively train a
proxy homogeneous feature extractor and heterogeneous lo-
cal model to exchange global and local knowledge. Aggre-
gating the proxy homogeneous local feature extractors from
clients fuses knowledge across heterogeneous clients. The-
oretical analysis and experiments demonstrate its effective-
ness and efficiency in communication and computation.
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